Given:

DE is angle bisector of $\angle A D C$.
BE \& AD intersect at 0

Construction:

Draw a line CO extend to meet AB at F
Draw DF.
Let DE intersect CF at G .
DF intersect BE at H .

Proof:

Given DG is angle bisector of $\angle O D C$
$\therefore \frac{O D}{D C}=\frac{O G}{G C}$
(1) (Angle bisector theorem)

As $\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ are concurrent at 0 .
By concurrency theorem,
$\frac{C G}{G O}=\frac{C F}{F O}$
From (1) \& (2)
$\frac{O D}{D C}=\frac{O G}{G C}=\frac{O F}{F C}$
DF is external angle bisector of $\angle O D C$.
i.e., $D F$ is the bisector of $\angle B D O$
$\frac{O D}{D B}=\frac{O H}{H B}$
By concurrency theorem
$\frac{B H}{H O}=\frac{B E}{E O}$
From (5) \& (6)
$\frac{O D}{D B}=\frac{O H}{H B}=\frac{O E}{B E}$
By Unit Pieces theorem,
In $\triangle A B C, \mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ are cevians concurrent at O .
$\frac{O D}{A D}+\frac{O E}{B E}+\frac{O F}{C F}=1$
$\frac{O D}{A D}+\frac{O D}{D B}+\frac{O D}{D C}=1 \quad$ by (3) \& (6)
ie $\frac{1}{\mathrm{AD}}+\frac{1}{\mathrm{BD}}+\frac{1}{\mathrm{CD}}=\frac{1}{\mathrm{OD}}$

