01.02.2024 - II Prize Winner - Mrs.Madhumitha's Solution

Given:

DE is angle bisector of $\angle ADC$. BE & AD intersect at O

Construction:

Draw a line CO extend to meet AB at F Draw DF. Let DE intersect CF at G. DF intersect BE at H.

Proof:

Given DG is angle bisector of $\angle ODC$ $\therefore \frac{OD}{DC} = \frac{OG}{GC}$ ------ (1) (Angle bisector theorem) As AD, BE, CF are concurrent at O. By concurrency theorem, $\frac{CG}{GO} = \frac{CF}{FO} \quad \dots \quad (2)$ From (1) & (2) DF is external angle bisector of $\angle ODC$. i.e., DF is the bisector of ∠BDO $\frac{OD}{DB} = \frac{OH}{HB}$ -----(4) By concurrency theorem $\frac{BH}{HO} = \frac{BE}{EO}$ (5) From (5) & (6) $\frac{OD}{DB} = \frac{OH}{HB} = \frac{OE}{BE}$ -----(6) By Unit Pieces theorem, In $\triangle ABC$, AD, BE, CF are cevians concurrent at O. $\frac{OD}{AD} + \frac{OE}{BE} + \frac{OF}{CF} = 1$ $\frac{OD}{AD} + \frac{OD}{DB} + \frac{OD}{DC} = 1$ by (3) & (6) ie $\frac{1}{AD} + \frac{1}{BD} + \frac{1}{CD} = \frac{1}{OD}$ ------ Hence Proved